Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542076

RESUMO

The exosomes derived from keratinocytes can have a substantial impact on melanogenesis by influencing melanocytes. MicroRNAs (miRNAs) encapsulated within exosomes are implicated in the control of melanogenesis, particularly when under the influence of UVB irradiation. This investigation explores UVB-induced exosomal miRNAs from keratinocytes as potential regulators of melanogenesis. UVB-irradiated, keratinocyte-derived exosomes were observed to augment melanogenesis in melanocytes, resulting in an upregulation of MITF, TRP1, TRP2, and TYR expression compared to non-UVB-irradiated exosomes. Additionally, a subset of exosomal miRNAs was differentially selected and confirmed to exert both enhancing and inhibitory effects on melanogenesis through functional assays. Notably, hsa-miR-644a, hsa-miR-365b-5p, and hsa-miR-29c-3p were found to upregulate melanogenesis, while hsa-miR-18a-5p, hsa-miR-197-5p, and hsa-miR-4281 downregulated melanogenesis. These findings suggest the involvement of keratinocyte-derived exosomal miRNAs in melanogenesis regulation within melanocytes. The expression levels of exosomal miRNAs from keratinocytes exhibited a UVB-dependent increase, indicating a potential role for these miRNAs as regulators of melanogenesis in response to UVB irradiation. Furthermore, melanogenesis was found to be dependent on exosomes derived from keratinocytes. This underscores the potential of UVB-induced exosomal miRNAs derived from keratinocytes as regulators of melanogenesis. Moreover, this study unveils a significant role for exosomes in melanocyte pigmentation, presenting a novel pathway in the intricate process of melanogenesis.


Assuntos
Exossomos , MicroRNAs , 60451 , MicroRNAs/genética , MicroRNAs/metabolismo , Queratinócitos/metabolismo , Melanócitos/metabolismo , Raios Ultravioleta/efeitos adversos , Exossomos/genética , Exossomos/metabolismo
2.
Sci Rep ; 13(1): 22699, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123797

RESUMO

Owing to the intrinsic signal noise in the characterization of chemical structures through Fourier transform infrared (FT-IR) spectroscopy, the determination of the signal-to-noise ratio (SNR) depends on the level of the concentration of the chemical structures. In situations characterized by limited concentrations of chemical structures, the traditional approach involves mitigating the resulting low SNR by superimposing repetitive measurements. In this study, we achieved comparable high-quality results to data scanned 64 times and superimposed by employing machine learning algorithms such as the principal component analysis and non-negative matrix factorization, which perform the dimensionality reduction, on FT-IR spectral image data that was only scanned once. Furthermore, the spatial resolution of the mapping images correlated to each chemical structure was enhanced by applying both the machine learning algorithms and the Gaussian fitting simultaneously. Significantly, our investigation demonstrated that the spatial resolution of the mapping images acquired through relative intensity is further improved by employing dimensionality reduction techniques. Collectively, our findings imply that by optimizing research data through noise reduction enhancing spatial resolution using the machine learning algorithms, research processes can be more efficient, for instance by reducing redundant physical measurements.

3.
Toxicol Res ; 39(3): 477-484, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37398575

RESUMO

The Organization for Economic Co-operation and Development approved a reconstructed human epidermis (RHE) model for in vitro skin irritation and corrosion tests as an alternative to animal testing for cosmetics, which has been banned in the European Union since 2013. However, RHE models have several limitations, such as high manufacturing costs, a loose skin barrier, and inability to simulate all cellular and non-cellular components of the human epidermis. Therefore, new alternative skin models are needed. Ex vivo skin models have been suggested as promising tools. Here, we investigated the structural similarities in the epidermis of pig and rabbit skin, a commercial RHE model (Keraskin), and human skin. To compare the structural similarity, the thickness of each epidermal layer was compared using molecular markers. Among the candidate human skin surrogates, the epidermal thickness of the pig skin was the most similar to that of human skin, followed by rabbit skin and Keraskin. Keraskin showed thicker cornified and granular layers than human skin, while rabbit skin displayed thinner layers. Moreover, the proliferation indices of Keraskin and rabbit skin were higher than those of human skin, whereas the proliferation index of the pig skin was similar to that of human skin. Some or none of the human skin barrier proteins FLG, CLDN1, and CDH1 were expressed in pig and rabbit skin, whereas all human proteins were expressed in Keraskin. Collectively, we propose ex vivo pig skin as the most suitable model for skin irritation testing because of its similarity to human skin. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00185-1.

4.
Biomol Ther (Seoul) ; 31(6): 640-647, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37524442

RESUMO

The skin, the largest organ in the body, undergoes age-related changes influenced by both intrinsic and extrinsic factors. The primary external factor is photoaging which causes hyperpigmentation, uneven skin surface, deep wrinkles, and markedly enlarged capillaries. In the human dermis, it decreases fibroblast function, resulting in a lack of collagen structure and also decreases keratinocyte function, which compromises the strength of the protective barrier. In this study, we found that treatment with γ-aminobutyric acid (GABA) had no toxicity to skin fibroblasts and GABA enhanced their migration ability, which can accelerate skin wound healing. UVB radiation was found to significantly induce the production of matrix metalloproteinase 1 (MMP-1), but treatment with GABA resulted in the inhibition of MMP-1 production. We also investigated the enhancement of filaggrin and aquaporin 3 in keratinocytes after treatment with GABA, showing that GABA can effectively improve skin moisturization. In vivo experiments showed that oral administration of GABA significantly improved skin wrinkles and epidermal thickness. After the intake of GABA, there was a significant decrease observed in the increase of skin thickness measured by calipers and erythema. Additionally, the decrease in skin moisture and elasticity in hairless mice exposed to UVB radiation was also significantly restored. Overall, this study demonstrates the potential of GABA as functional food material for improving skin aging and moisturizing.

5.
Exp Dermatol ; 32(9): 1394-1401, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37218931

RESUMO

16-kauren-2-beta-18, 19-triol (16-kauren) is a natural diterpenoid substance derived from Asteraceae psiadia punctulata, a small tropical shrub in Africa and Asia, and it can reduce Mlph expression without affecting the expression of Rab27a and MyoVa in melanocytes. Melanophilin (Mlph) is an important linker protein in the melanosome transport process. However, the signal transduction pathway for the regulation of Mlph expression has not been fully established. We examined the mechanism of 16-kauren on Mlph expression. Murine melan-a melanocytes were used for in vitro analysis. Western blot analysis, quantitative real-time polymerase chain reaction, and luciferase assay were performed. The inhibition of Mlph expression by 16-kauren-2ß-18,19-triol (16-kauren) occurs through the JNK signal and is reversed following glucocorticoid receptor (GR) activation by dexamethasone (Dex). Especially, 16-kauren activates JNK and c-jun signalling, part of the MAPK pathway, with subsequent Mlph repression. When the JNK signal is weakened by siRNA, the inhibition of Mlph expression by 16-kauren was not seen. JNK activation by 16-kauren induces GR phosphorylation, which leads to Mlph repression. These results demonstrate that 16-kauren regulates Mlph expression through the phosphorylation of GR via the JNK signalling pathway.


Assuntos
Melanócitos , Receptores de Glucocorticoides , Camundongos , Animais , Receptores de Glucocorticoides/metabolismo , Fosforilação , Melanócitos/metabolismo , Melanossomas/metabolismo , Transporte Biológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
6.
Biomol Ther (Seoul) ; 31(4): 466-472, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971066

RESUMO

Exon skipping is an efficient technique to inhibit specific gene expression induced by a short-sequence peptide nucleic acid (PNA). To date, there has been no study on the effects of PNA on skin pigmentation. In melanocytes, the tripartite complex is responsible for the transport of mature melanosomes from the nucleus to the dendrites. The tripartite complex is composed of Rab27a, Mlph (Melanophilin), and Myosin Va. Defects in the protein Mlph, a melanosome transport-related protein, are known to cause hypopigmentation. Our study shows that Olipass peptide nucleic acid (OPNA), a cell membrane-permeable PNA, targets exon skipping in the Mlph SHD domain, which is involved in Rab27a binding. Our findings demonstrate that OPNA induced exon skipping in melan-a cells, resulting in shortened Mlph mRNA, reduced Mlph protein levels, and melanosome aggregation, as observed by microscopy. Therefore, OPNA inhibits the expression of Mlph by inducing exon skipping within the gene. These results suggest that OPNA, which targets Mlph, may be a potential new whitening agent to inhibit melanosome movement.

7.
Antibiotics (Basel) ; 12(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36830230

RESUMO

Hyperpigmentation frequently occurs after inflammation from bacterial infection. Thus, the inhibition activity of tyrosinase, the key enzyme to catalyze the melanogenesis and/or inhibition of bacterial infection, could decrease melanin production. Hence, the potential inhibitors could be discovered from natural products. ω-Hydroxymoracin C (1), a new compound with two other 2-arylbenzofurans, i.e., moracin M (2) and moracin C (3), and two stilbenes, i.e., 3, 4, 3', 5'-tetrahydroxybibenzyl (4) and piceatannol (5), were isolated from the wood of Streblus taxoides. Compound 4 showed a strong inhibitory activity against tyrosinase enzyme with an IC50 value of 35.65 µg/mL, followed by compound 2 with an IC50 value of 47.34 µg/mL. Conversely, compound 1, 3 and 5 showed moderate activity, with IC50 values of 109.64, 128.67 and 149.73 µg/mL, respectively. Moreover, compound 1 and 3 showed an antibacterial effect against some Staphylococcus spp. Thus, the isolated compounds exhibited potential antityrosine and antibacterial effects. Additionally, an in silico study was performed in order to predict theoretical molecular interactions between the obtained metabolites from S. taxoides and tyrosinase as an extended in vitro enzyme binding assay experiment.

8.
Curr Issues Mol Biol ; 44(2): 526-540, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35723322

RESUMO

Extracellular vesicles, which are highly conserved in most cells, contain biologically active substances. The vesicles and substances interact with cells and impact physiological mechanisms. The skin is the most external organ and is in direct contact with the external environment. Photoaging and skin damage are caused by extrinsic factors. The formation of wrinkles is a major indicator of skin aging and is caused by a decrease in collagen and hyaluronic acid. MMP-1 expression is also increased. Due to accruing damage, skin aging reduces the ability of the skin barrier, thereby lowering the skin's ability to contain water and increasing the amount of water loss. L. plantarum suppresses various harmful bacteria by secreting an antimicrobial substance. L. plantarum is also found in the skin, and research on the interactions between the bacteria and the skin is in progress. Although several studies have investigated L. plantarum, there are only a limited number of studies on extracellular vesicles (EV) derived from L. plantarum, especially in relation to skin aging. Herein, we isolated EVs that were secreted from L. plantarum of women in their 20s (LpEVs). We then investigated the effect of LpEVs on skin aging in CCD986sk. We showed that LpEVs modulated the mRNA expression of ECM related genes in vitro. Furthermore, LpEVs suppressed wrinkle formation and pigmentation in clinical trials. These results demonstrated that LpEVs have a great effect on skin aging by regulating ECM related genes. In addition, our study offers important evidence on the depigmentation effect of LpEVs.

9.
J Cosmet Dermatol ; 21(6): 2602-2609, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34418257

RESUMO

BACKGROUND: The build-up of advanced glycation end products (AGEs) is one of important factor of skin aging. Natural compounds with anti-glycation activities might have great anti-aging potential. AIMS: The objective of this study was to evaluate an anti-glycation effects of methyl gallate as a potent ingredient for anti-aging. METHODS: We first evaluated the AGEs inhibitory ability of methyl gallate in BSA/glucose system. Levels of Nε-CML and carbonyl contents were also measured in BSA/glucose system. To further investigate if methyl gallate could prevent glycation in full-thickness human skin explants. Glycation action was determined by the observation of the general morphology of dermis and epidermis structures and FBN-1 and of CML immunostaining. In an in-vivo study, primary irritation test was also performed to ensure the safety of methyl gallate for human skin. RESULTS: It is known that methyl gallate can suppress glycation reaction between BSA and glucose. Methyl gallate also has a remarkable potential to reduce the oxidation of proteins. Furthermore, the anti-glycation activity of methyl gallate has been confirmed in a human skin ex-vivo model. Methyl gallate decreased the expression of CML but stimulated the expression of FBN-1 compared with MGO treatment. In an in-vivo study, methyl gallate (0.1%) did not cause any skin irritation, suggesting that methyl gallate could be used as an active ingredient in cosmetics. CONCLUSION: Our results showed that methyl gallate could protect against glucose-mediated glycation in vitro. Furthermore, methyl gallate significantly prevented glycation in living human skin explants. Due to these beneficial effects, methyl gallate can be used to prevent or manage AGE-mediated skin aging.


Assuntos
Ácido Gálico , Envelhecimento da Pele , Ácido Gálico/análogos & derivados , Glucose , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Humanos
10.
Sci Rep ; 11(1): 16813, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413386

RESUMO

Mlph plays a crucial role in regulating skin pigmentation through the melanosome transport process. Although Mlph is a major component involved in melanosome transport, the mechanism that regulates the expression of the Mlph gene has not been identified. In this study, we demonstrate that Mlph expression is regulated by the glucocorticoid receptor (GR). Alteration of GR activity using a specific GR agonist or antagonist only regulated the expression of Mlph among the 3 key melanosome transport proteins. Translocation of GR from the cytosol into the nucleus following Dex treatment was confirmed by separating the cytosol and nuclear fractions and by immunofluorescence staining. In ChIP assays, Dex induced GR binding to the Mlph promoter and we determined that Dex induced the GR binding motif on the Mlph promoter. Our findings contribute to understanding the regulation of Mlph expression and to the novel role of GR in Mlph gene expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação da Expressão Gênica , Receptores de Glucocorticoides/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Transporte Biológico/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hidrocortisona/sangue , Melanossomas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Receptores de Glucocorticoides/agonistas , Regulação para Cima/efeitos dos fármacos
11.
Sci Rep ; 11(1): 7778, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833342

RESUMO

Melanoma is a disease with a high recurrence rate and poor prognosis; therefore, the need for targeted therapeutics is steadily increasing. Oligodendrocyte transcription factor2 (Olig2) is a basic helix-loop-helix transcription factor that is expressed in the central nervous system during embryonic development. Olig2 is overexpressed in various malignant cell lines such as lung carcinoma, glioma and melanoma. Olig2 is known as a key transcription factor that promotes tumor growth in malignant glioma. However, the role of Olig2 in melanoma is not well characterized. We analyzed the role of Olig2 in apoptosis, migration, and invasion of melanoma cells. We confirmed that Olig2 was overexpressed in melanoma cells and tissues. Reduction of Olig2 increased apoptosis in melanoma cells by increasing p53 level and caspase-3/-7 enzyme activity. In addition, downregulation of Olig2 suppressed migration and invasion of melanoma cells by inhibiting EMT. Reduction of Olig2 inhibited expression of MMP-1 and the enzyme activity of MMP-2/-9 induced by TGF-ß. Moreover, Olig2 was involved in the downstream stages of MEK/ERK and PI3K/AKT, which are major signaling pathways in metastatic progression of melanoma. In conclusion, this study demonstrated the crucial roles of Olig2 in apoptosis, migration, and invasion of melanoma and may help to further our understanding of the relationship between Olig2 and melanoma progression.


Assuntos
Melanoma/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/fisiologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Processos Neoplásicos , Transdução de Sinais
12.
Molecules ; 27(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011235

RESUMO

Phytochemical investigation of Artocarpus chama stem was performed by chromatographic techniques, resulting from the isolation and structure elucidation of three new compounds, namely 3'-farnesyl-apigenin (1), 3-(hydroxyprenyl) isoetin (2), and 3-prenyl-5,7,2',5'-tetrahydroxy-4'-methoxyflavone (3), and five known compounds, namely homoeriodictyol (4), isocycloartobilo-xanthone (5), artocarpanone (6), naringenin (7), and artocarpin (8). From the screening result, A. chama extract showed a potent tyrosinase inhibitory effect. Ihe isolated compounds 1, 4 and 6 also exhibited tyrosinase inhibition with IC50 of 135.70, 52.18, and 38.78 µg/mL, respectively. Moreover, compounds 3, 4, 5, 6, and 8 showed strong activity against Staphylococcus epidermidis, S. aureus, methicillin-resistant S. aureus, and Cutibacterium acnes. This study is the first report on phytochemical investigation with new compounds and biological activities of A. chama. Skin infection can cause dark spots or hyperpigmentation. The isolated compounds that showed both anityrosinase and antimicrobial activities will be further studied in in vivo and clinical trials in order to develop treatment for hyperpigmentation, which is caused by infectious diseases by microorganisms.


Assuntos
Antibacterianos/química , Artocarpus/química , Flavonas/química , Extratos Vegetais/química , Caules de Planta/química , Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Flavanonas/química , Flavonas/farmacologia , Humanos , Lectinas de Ligação a Manose/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Lectinas de Plantas/química , Prenilação , Staphylococcus epidermidis/efeitos dos fármacos , Xantonas/química
13.
Biomol Ther (Seoul) ; 29(2): 220-226, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32952129

RESUMO

The role of particulate matter (PM) in health problems including cardiovascular diseases (CVD) and pneumonia is becoming increasingly clear. Polycyclic aromatic hydrocarbons, major components of PM, bind to aryl hydrocarbon receptor (AhRs) and promote the expression of CYP1A1 through the AhR pathway in keratinocytes. Activation of AhRs in skin cells is associated with cell differentiation in keratinocytes and inflammation, resulting in dermatological lesions. Oleanolic acid, a natural component of L. lucidum, also has anti-inflammation, anticancer, and antioxidant characteristics. Previously, we found that PM10 induced the AhR signaling pathway and autophagy process in keratinocytes. Here, we investigated the effects of oleanolic acid on PM10-induced skin aging. We observed that oleanolic acid inhibits PM10-induced CYP1A1 and decreases the increase of tumor necrosis factor- alpha and interleukin 6 induced by PM10. A supernatant derived from keratinocytes cotreated with oleanolic acid and PM10 inhibited the release of matrix metalloproteinase 1 in dermal fibroblasts. Also, the AhR-mediated autophagy disruption was recovered by oleanolic acid. Thus, oleanolic acid may be a potential treatment for addressing PM10-induced skin aging.

14.
Antioxidants (Basel) ; 9(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202630

RESUMO

Chemically synthesized retinyl palmitate has been widely used in the cosmetic and biotechnology industry. In this study, we aimed to demonstrate the microbial production of retinyl palmitate and the benefits of microbial retinyl palmitate in skin physiology. A heterologous retinyl palmitate biosynthesis pathway was reconstructed in metabolically engineered Escherichia coli using synthetic expression modules from Pantoea agglomerans, Salinibacter ruber, and Homo sapiens. High production of retinyl palmitate (69.96 ± 2.64 mg/L) was obtained using a fed-batch fermentation process. Moreover, application of purified microbial retinyl palmitate to human foreskin HS68 fibroblasts led to increased cellular retinoic acid-binding protein 2 (CRABP2) mRNA level [1.7-fold (p = 0.001) at 100 µg/mL], acceleration of cell proliferation, and enhancement of procollagen synthesis [111% (p < 0.05) at 100 µg/mL], strongly indicating an anti-ageing-related effect of this substance. These results would pave the way for large-scale production of retinyl palmitate in microbial systems and represent the first evidence for the application of microbial retinyl palmitate as a cosmeceutical.

15.
Theranostics ; 10(9): 3880-3891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226526

RESUMO

Prohibitin (PHB, also known as PHB1 or BAP32), is a highly conserved 31kDa protein that expressed in many cellular compartments, such as mitochondria, nucleus, cytosol, and plasma membrane, and plays roles in regulating the transcription of genes, apoptosis, and mitochondrial biogenesis. There is a report that Prohibitin expression is required for the stimulation of pigmentation by melanogenin. However, no studies have been published on the function of PHB in melanocytes, especially in melanosome transport. Methods: Immunofluorescence was performed to confirm the localization of PHB. siRNA transfections, Co-immunoprecipitation, western blotting and proximity ligation assay were performed to find binding state between proteins and demonstrate functions of PHB on melanosome transport. Results: PHB is located in the melanosome and perinuclear aggregation of melanosome is induced when expression of PHB is reduced with no influence on melanin contents. PHB binds directly to Rab27a and Mlph but not Myosin-Va. Rab27a and Mlph bind to specific domains of PHB. Reduced expression of PHB led to the impaired binding affinity between Rab27a and Mlph. Conclusion: PHB regulates melanosome transport by linking to Rab27a and Mlph in melanocytes. Targeting and regulating PHB not only manages pigmentation in melanocytes, but also controls hyperpigmentation in melanoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Melaninas/metabolismo , Melanossomas/metabolismo , Proteínas Repressoras/fisiologia , Proteínas rab27 de Ligação ao GTP/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Pigmentação , Proibitinas , Ligação Proteica
16.
J Cosmet Sci ; 71(2): 53-64, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271708

RESUMO

The aim of the study was to investigate the potential of a fucoxanthin concentrate prepared from Phaeodactylum tricornutum as a wrinkle care cosmetic agent. The concentrate (up to 25 µg/ml) did not affect the proliferation of human fibroblasts. In addition, the concentrate significantly increased procollagen synthesis in the fibroblasts at 12.5 and 25 µg/ml; however, it significantly decreased the expression of matrix metalloproteinase (MMP)-1, MMP-2, and MMP-9 at 25 µg/ml. In a follow-up study, a wrinkle care cream containing 0.03% of fucoxanthin concentrate was prepared and tested in women (aged 35-50 years, n = 21) for 8 weeks. The cream was applied twice daily. Safety assessment of the cream was carried out visually. In addition, interviews were conducted to investigate if adverse events such as erythema, edema, scaling, itching, stinging, burning, tightness, or prickling had occurred. No symptoms that threaten skin safety were reported. Evaluation of wrinkles around the eyes using the replica method showed a statistically significant decrease in wrinkles at week 8. Moreover, skin moisture and elasticity increased significantly from week 4. These results suggest that the fucoxanthin concentrate has no adverse effects on the skin and can be used as an active ingredient in wrinkle care cosmetics.


Assuntos
Cosméticos , Envelhecimento da Pele , Xantofilas/farmacologia , Adulto , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade
17.
J Ginseng Res ; 44(2): 274-281, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32148409

RESUMO

BACKGROUND: Ultraviolet (UV) goes through the epidermis and promotes release of inflammatory cytokines in keratinocytes. Granulocyte-macrophage colony-stimulating factor (GM-CSF), one of the keratinocyte-derived cytokines, regulates proliferation and differentiation of melanocytes. Extracellular signal-regulated kinase (ERK1/2) and protein kinase C (PKC) signaling pathways regulate expression of GM-CSF. Based on these results, we found that ginsenoside Rh3 prevented GM-CSF production and release in UV-B-exposed SP-1 keratinocytes and that this inhibitory effect resulted from the reduction of PKCδ and ERK phosphorylation. METHODS: We investigated the mechanism by which ginsenoside Rh3 from Panax ginseng inhibited GM-CSF release from UV-B-irradiated keratinocytes. RESULTS: Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or UV-B induced release of GM-CSF in the SP-1 keratinocytes. To elucidate whether the change in GM-CSF expression could be related to PKC signaling, the cells were pretreated with H7, an inhibitor of PKC, and irradiated with UV-B. GM-CSF was decreased by H7 in a dose-dependent manner. When we analyzed which ginsenosides repressed GM-CSF expression among 15 ginsenosides, ginsenoside Rh3 showed the largest decline to 40% of GM-CSF expression in enzyme-linked immunosorbent assay. Western blot analysis showed that TPA enhanced the phosphorylation of PKCδ and ERK in the keratinocytes. When we examined the effect of ginsenoside Rh3, we identified that ginsenoside Rh3 inhibited the TPA-induced phosphorylation levels of PKCδ and ERK. CONCLUSION: In summary, we found that ginsenoside Rh3 impeded UV-B-induced GM-CSF production through repression of PKCδ and ERK phosphorylation in SP-1 keratinocytes.

18.
J Dermatol Sci ; 97(2): 101-108, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31892452

RESUMO

BACKGROUND: Rab27a, Mlph, and MyoVa form a tripartite complex and relate to melanosome distribution. Melanophilin (Mlph) acts as a linker protein between Rab27a and MyoVa. The biological activity and function of 16-kauren on the expression of Mlph has not yet been studied. OBJECTIVE: We examined the effect of 16-kauren on melanosome transport and skin pigmentation. METHODS: Murine Melan-a melanocytes and SP-1 keratinocytes were used for in vitro analysis. Western blot analysis, quantitative real-time polymerase chain reaction, luciferase assay and immunohistochemical staining in 3D pigmented human skin model were performed. RESULTS: We found that 16-kauren inhibits melanosome transport in Melan-a melanocytes without affecting melanin synthesis. Treatment with 16-kauren reduced melanophilin (Mlph), a key protein in melanosome transport, in Melan-a melanocytes, at both the protein and mRNA levels while it did not affect the expression of Rab27a and MyoVa, the other two key proteins for melanosome transport. Notably, the expression of melanogenic proteins, including tyrosinase, trp1, trp2, and MITF, was not affected by 16-kauren. However, 16-kauren attenuated melanosome distribution in co-culture of Melan-a melanocytes and SP-1 keratinocytes as well as in Melan-a monolayer culture. In further confirmation of the depigmenting effects of 16-kauren on Melanoderm™, a 3D pigmented human skin model, treatment with 16-kauren for 12 days increased the brightness of the tissue as determined by lightness value and reduced the distribution of melanosomes as shown in histological examination. CONCLUSION: These results demonstrated that 16-kauren is a selective modulator of a melangenic target, Mlph expression, and can be employed as a new depigmenting strategy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diterpenos do Tipo Caurano/farmacologia , Melanócitos/efeitos dos fármacos , Melanossomas/efeitos dos fármacos , Pigmentação da Pele/efeitos dos fármacos , Animais , Asteraceae/química , Linhagem Celular Tumoral , Técnicas de Cocultura , Regulação para Baixo/efeitos dos fármacos , Queratinócitos , Antígeno MART-1/genética , Antígeno MART-1/metabolismo , Melaninas/biossíntese , Melanócitos/citologia , Melanócitos/metabolismo , Melanossomas/metabolismo , Camundongos
20.
Sci Rep ; 9(1): 18418, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804534

RESUMO

Green tea supplementation has beneficial health effects. However, its underlying mechanisms, such as effects on modulating the intestinal microbiome and endogenous metabolome, particularly following short-term supplementation, are largely unclear. We conducted an integrative metabolomics study to evaluate the effects of short-term (7-day) supplementation of green tea extract (GTE) or its components, epigallocatechin gallate, caffeine, and theanine, on the caecum microbiota and caecum/skin metabolome in mice. Further, we established an integrative metabolome-microbiome model for correlating gut and skin findings. The effects of short-term supplementation with dietary compounds were evaluated with respect to UV stress response, with GTE showing the most remarkable effects. Biplot analysis revealed that Bifidobacteria and Lactobacillus spp. were considerably influenced by short-term GTE supplementation, while Clostridium butyricum was significantly increased by UV stress without supplementation. GTE supplementation helped the skin metabolome defend against UV stress. Interestingly, a significant positive correlation was observed between caecum bacteria (Bifidobacteria, Lactobacillus spp.) and metabolites including skin barrier function-related skin metabolites, caecal fatty acids, and caecal amino acids. Overall, 7-day GTE supplementation was sufficient to alter the gut microbiota and endogenous caecum/skin metabolome, with positive effects on UV stress response, providing insight into the mechanism of the prebiotic effects of GTE supplementation.


Assuntos
Bifidobacterium/efeitos dos fármacos , Clostridium butyricum/efeitos dos fármacos , Lactobacillus/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Extratos Vegetais/farmacologia , Chá/química , Aminoácidos/metabolismo , Animais , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/isolamento & purificação , Cafeína/isolamento & purificação , Cafeína/farmacologia , Catequina/análogos & derivados , Catequina/isolamento & purificação , Catequina/farmacologia , Ceco/efeitos dos fármacos , Ceco/microbiologia , Ceco/efeitos da radiação , Clostridium butyricum/crescimento & desenvolvimento , Clostridium butyricum/isolamento & purificação , Ácidos Graxos/metabolismo , Feminino , Glutamatos/isolamento & purificação , Glutamatos/farmacologia , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Metaboloma/fisiologia , Camundongos , Prebióticos/análise , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...